
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 237
Volume 1, Issue 4, December 2010

Removing Redundancy in Dictionary based

Compression Techniques

Neha Gupta
1
, Ranjit Kumar

2
 and Apoorv Gupta

3

1Gateway Institute of Engineering and Technology, MDU Rohtak, India
2Gateway Institute of Engineering and Technology, MDU Rohtak, India
3Technological Institute of Technology & Sciences, MDU Rohtak, India

1guptaneha2006@gmail.com, 2ranjitpes@gmail.com, 3apoorv.gupta@infosys.com

Abstract: Many data compression schemes are developed nowadays

and they are selected according to the requirements, such as fast

encoding, fast decoding, a good compression performance, small

amount of required memory etc. In this thesis, the basic dictionary

based data compression techniques i.e. LZ77, LZ78 and LZW, have

been studied to find their drawbacks, so that they can be improved

further. As out of LZ77, LZ78 and LZW, the variants of LZW are

widely used in a number of applications. So, the thesis is mainly

oriented towards improving on LZW. Based on the study, we have

tried to identify the sources of redundancy in these algorithms and

have suggested a method which is a simple dictionary-pruning

algorithm that removes the irrelevant entries from the dictionary every

time the dictionary is out of space; to store new phrases. This ensures

that the dictionary is always adaptive.

Keyword: Compression, Decompression, Dictionary-based, LZW,

Pruning, Performance.

1. Introduction

Data compression is, in the context of computer science, the

science (and art) of representing information in a compact

form. It has been one of the critical enabling technologies for

the ongoing digital multimedia revolution for decades. Most

people frequently use data compression software such as zip,

gzip and WinZip (and many others) to reduce the file size

before storing or transferring it in media. There are two major

families of compression techniques when considering the

possibility of reconstructing exactly the original source. They

are called lossless and lossy compression. A compression

approach is lossless only if it is possible to exactly reconstruct

the original data from the compressed version. A compression

method is lossy if it is not possible to reconstruct the original

exactly from the compressed version. Lossless data

compression is generally implemented using one of two

different types of modeling: statistical or dictionary-based.

Statistical modeling reads in and encodes a single symbol at a

time using the probability of that character‟s appearance.

Dictionary-based modeling uses a single code to replace strings

of symbols. In dictionary-based modeling, the coding problem

is reduced in significance, leaving the model supremely

important.

2. Dictionary-based modeling (LZW)

The LZW method starts by initializing the dictionary to all the

symbols in the alphabet. Then the encoder inputs symbols one

by one and accumulates them in a string „word‟. After each

symbol is input and is concatenated to „word‟, the dictionary is

searched for string „word‟. As long as „word‟ is found in the

dictionary, the process continues. At a certain point, adding the

next symbol „x‟ causes the search to fail; string „word‟ is in the

dictionary but string „word‟ + „x‟ (symbol „x‟ concatenated to

„word‟) is not. At this point the encoder outputs the dictionary

pointer that points to string „word‟, Saves string „word‟ + „x‟

(which is now called a phrase) in the next available dictionary

entry, and Initializes string „word‟ to symbol „x‟.

Since the first 256 entries of the dictionary are occupied right

from the start, pointers to the dictionary have to be longer than

8 bits. A simple implementation would typically use 16-bit

pointers, which allow for a 64K-entry dictionary (where 64K =

216 = 65,536). Such a dictionary will, of course, fill up very

quickly in all but the smallest compression jobs. Another

interesting fact about LZW is that strings in the dictionary get

only one character longer at a time. It therefore takes a long

time to get long strings in the dictionary, and thus a chance to

achieve really good compression. We can say that LZW adapts

slowly to its input data.

The encoding algorithm is:

word ← "

while not EOF do

 x ← read_next_character()

 if word + x is in the dictionary then

 word ← word + x

 else

 output the dictionary index for word

 add word + x to the dictionary

 word ← x

 end if

end while

output the dictionary index for word

The decoding algorithm now is:

read a codeword x from the compressed file

mailto:guptaneha2006@gmail.com
mailto:ranjitpes@gmail.com
mailto:apoorv.gupta@infosys.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 238
Volume 1, Issue 4, December 2010

look up dictionary for phrase at x

output phrase

word ← phrase

while not EOF do

 read x

 look up dictionary for phrase at x

 if there is no entry yet for index x then

 phrase ← word + firstCharOfword

 end if

 output phrase

 add word + firstCharOfphrase to the dictionary

 word ← phrase

end while

3. The Dictionary Pruning Algorithm-LWZ(P)-

Proposed Work

In this section a method for dictionary pruning has been

proposed. As LZW is a very popular dictionary based data

compression technique, modification attributes to include our

pruning process.

In LZW, phrases from input string are added to dictionary

and corresponding 12 bit codes are sent to the output. So, an

LZW dictionary can contain maximum of 2
12

 = 4096 entries.

The basic LZW algorithm is modified in such a way that

whenever the dictionary gets full, a function is called that will

remove all the entries that have never been used till time, since

the creation of dictionary. The main work of the function is to

identify these phrases. For this, every entry in dictionary is

associated with a flag value. The function checks every phrase

for its flag value, and removes it if the flag value matches the

deletion condition. Values of flag variable according to specific

condition are:

 0 unused entries

dict[i].flag = 1 entry used at least once

 2 deleted entry

3.1 Assumptions

Table 1. Assumptions table for dictionary pruning algorithm.

Symbol Meaning

word string that contains all the characters

that have been scanned till time and

should be searched in the dictionary

x next character to be scanned from the

input file

size number of phrases that are currently

present in the dictionary

3.2 Algorithm

The pruning process algorithm work as follows:

a) Scan the input string, character by character until the

end of file is reached.

b) After each character „x‟ is input, it is concatenated to

„word‟, and the dictionary is searched for string

„word‟.

c) As long as „word‟ is found in the dictionary, the search

process continues.

d) At a certain point, adding the next symbol „x‟ causes the

search to fail; string „word‟ is in the dictionary but

string „word‟ + „x‟ (symbol „x‟ concatenated to

„word‟) is not.

e) At this point the encoder outputs the dictionary pointer

that points to string „word‟, and saves string „word‟ +

„x‟ (which is now called a phrase) in the next

available dictionary entry, and initializes string „word‟

to symbol „x‟.

f) This process continues until the dictionary is full i.e. all

4096 locations have been occupied by phrases.

As the dictionary overflows, all the entries having flag = 0 i.e.

the phrases whose code has never been used in the output, are

searched and removed from the dictionary by setting the

corresponding flag value to 2.

Now to insert new entries in the dictionary, the space restored

during deletion, is used.

3.3 Pseudo-Code

LZW(P)

word ← "

while not EOF do

 x ← read_next_character()

 if word + x is in the dictionary then

 word ← word + x

 else

 search for the first occurring available location

 add word + x to the dictionary

 size ← size + 1

 output the dictionary index for word

 word ← x

 end if

 if size = 4096

 dict_prune()

 end while

 output the dictionary index for word

dict_prune()

for all dictionary entries do

 if flag is 0

 set flag ← 2 //marks the entry as deleted

 size ← size – 1

 3.4. Advantages

The dictionary pruning algorithm proposed above has the

following advantages:

a) In classic version of LZW, the dictionary becomes

static when it reaches its maximum size, but the

proposed algorithm remains adaptive, as whenever the

dictionary reaches its maximum value, it removes the

unused phrases from the dictionary.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 239
Volume 1, Issue 4, December 2010

b) The proposed algorithm improves the compression by a

considerable amount, as it is ensures that dictionary

contains only those phrases that will help in

compression.

c) The irrelevant entries are always updated, making space

for new entries that are more relevant to the input file.

4. Performance Evaluation

4.1 Comparison of LZW and LZW(P)

This section presents compression and analysis results of a

classic and proposed LZW algorithm on a number of different

files. Table 2 gives the details of the Datasets on which the

above algorithms have been tested.

Table 2. Datasets

S. No. File Name File Size(bytes)

1 Book1.txt 768770

2 Book2.txt 610855

3 News.txt 377108

4 Paper.txt 53155

Figure 1 shows the overall compression achieved as the source

files were processed using the two algorithms. The two

different bars correspond to classic LZW and LZW(P)

algorithms. The bars shows that compression using LZW(P)

has a consistent advantage over LZW:

Figure 1. LZW (P) performance graph compared to LZW

compression.

The graph shows the compression gain that LZW(P) has over

LZW. In real scenario, the LZW(P) shows a gain of about 6-

8% in compression ratio when tested on different files.

Some experimental results to show the effect of dictionary

pruning on compression performance are given in Table 3.

Table 3. Performance Analysis of LZW and LZW(P).

Source
Files

Original Size
(Bytes)

LZW
(Bytes)

LZW(P)
(Bytes)

Book1.txt 768770 260536 237580

Book2.txt 610855 231020 205560

News.txt 377108 155260 143902

Paper.txt 53155 20696 17398

5. Conclusion
The various data compression techniques and methods to

optimize them were considered. The first algorithm that is

proposed takes into account the fact that the dictionary used in

LZW becomes static once all the 4096 locations has been

occupied. The algorithm adds a process for dictionary pruning

to LZW, so that it remains adaptive. It does so by removing the

entries that are irrelevant and are not required. These entries

take up unnecessary dictionary space that could be utilized by

more useful keywords. The proposed algorithm removes these

entries whenever the dictionary is full. Waste phrases are found

by associating each phrase with a flag value which is 0 for the

phrases that were never used during compression. By applying

this modification better compression ratios were achieved. So,

by adding a little extra overhead, the proposed method

achieved about 6%-8% better compression ratios than the

classic LZW.

References

[1] C. L. Yu and J. L. Wu, “Hierarchical dictionary model and

dictionary management policies for data compression”, Signal

Processing, Sept 1999.

[2] R. N. Horspool, “The Effect of Non-Greedy Parsing in Ziv-

Lempel Compression Methods”, IEEE Data Compression

Conference, 1995.

[3] S. Subathra, M. Sethuraman and J. V. B. James,

“Performance Analysis of Dictionary based Data Compression

Algorithms for High Speed Networks”, IEEE Indicon

Conference, Dec 2005.

[4] N. Zhang, T. Tao, R. V. Satya and A. Mukherjee,

“Modified LZW Algorithm for Efficient Compressed Text

Retrieval”, draft, Computer Science Dept., Univ. of Central

Florida, 2004.

240
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)
Volume 1, Issue 4, December 2010

[5] R. N. Horspool, “Improving LZW”, Research, Dept. of

Computer Science, University of Victoria, Victoria, B.C,

Canada.

[6] Y. Matias, N. M. Rajboot and S. C. Sahinalp, “The Effect

of Flexible Parsing for Dynamic Dictionary Based Data

Compression”, Proceedings of the Data Compression

Conference, 1999.

[7] D. A. Huffman, “A method for the construction of

minimum redundancy codes”, Proceedings IRE 40, Sept

1952.

[8] D. Salomon, “Data Compression - The Complete

Reference”, 2
nd

 Ed, Springer-Verlag New York, Inc., New

York, 2001.

Author Biographies

Neha Gupta Her Birth place is Punjab and Date of Birth is 2 November

1983.She is B.tech in Information Technology from TITS,Bhiwani (2005

batch) and M.Tech in Computer Science from BITS, Bhiwani (2010 batch).

Now she is working as an Asst. Professor in GIET, Sonipat having 3.5 years

teaching experience.

Ranjit Kumar His Birth place is Bihar and Date of Birth is 20 November

1981.He is B.tech in Computer Science from P.E.S, Maharashtra (2005

batch) and M.E. in Software Engineering from BIT Mesra, Ranchi (2008

batch). Now he is working as an Asst. Professor in GIET, Sonipat having

2.5 years teaching experience.

Apoorv Gupta His Birth place is Haryana and Date of Birth is 7 October

1987.He is B.tech in Computer Science from TITS, Bhiwani (2009 batch).

Now he is working in Infosys Technology, pune.

